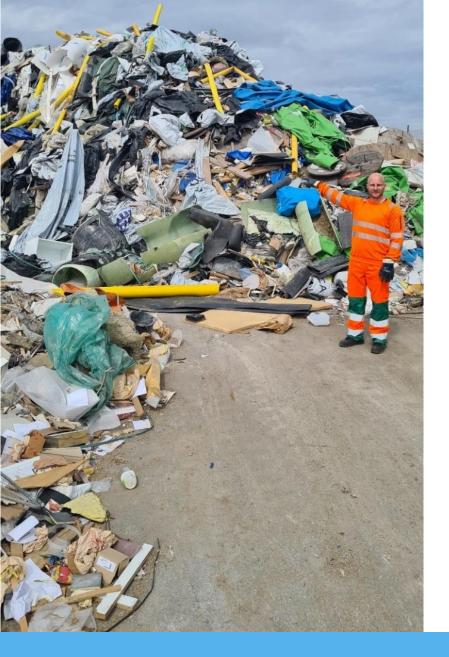
'BÖRjA' – Construction logistics for increased resource utilization and transport efficiency (Phase 2)

'BÖRJA' – Phase 1 (prestudy)

"Resource-efficient circular flows of construction materials supported by efficient data sharing"

ANDERS FORSBERG Government Affairs | Innovation Deployment Officer LINDHOLMEN SCIENCE PARK

Material bank Re-use | Remake Recycle - How?


3 times bigger than waste from Households

Background – major challenges

- Waste from construction industry constitutes 40% of all waste
- Re-use or recycling of waste in the industry is very low
- Lack of Business Model and Supply Chain
 - Need for inbound and outbound logistics and transport
 - Need for data sharing related to material flow
 - Need for coordination and policy on criterias at Public Procurement
 - Need for improved requirement from Contracting Authorities

Reality chock

Background – major challenges

There are several stand-alone examples of reuse and recycling, but they have not been scaled up due to inefficient logistics!

Break down of challenges

16 examples of types of data/ metrics:

"On site focus"

- Sorting rate on site	- Time for treatment
 Number of load carriers and type 	 Amount of clean material at the sorting facility that can be reused
 – Number of square meters for material handling 	 Lying time in storage
 – Number of kg/quantity per material in/out 	- Material handling on site
– Movements, time/number	 Type of material. Number of fractions
- Number of downloads	- Type of car
 – Cost of recycling/ waste management 	- Type of information/system
 Amount of material that can be reused directly on site 	 Off-site storage

Project goals

"Learning by doing"

- Increased resource utilization / transport efficiency
- Transformation from linear to circular material flows
- Implement and scaling up of approved solutions in a Value Chain
- Improved logistics, enabling small quantity in separated flows
- Provide a Proof of Concept on temporary storage in a Value Chain

(outbound material-flow-hub)

"Practical approach"

European Court of Auditors

Special report 17/2023, "Circular economy: slow transition by member states despite EU action"

• Transition to circular economy behind schedule

in EU countries

• EU countries' progress halted in recent years,

with insufficient focus on product design

• EU's target of doubling share of material

recycled by 2030 looks very challenging

"

Results

The project will provide the construction industry with complete logistics setups

- enabling circular material flows
- enabling proposals on collaboration and financial models

Combination of knowledge such as construction logistics and

- Supply Chain Management (Outbound logistics)
 - Recycling, policy and business models

Partners

4 stakeholders

The Project is addressing three types of construction sites

New construction | Renovation | Demolition

- Linköping University
- Ragn-Sells Recycling AB
- Plan B
- Lindholmen Science Park

Partners

Demonstrator

"On site approach"

23 stakeholders

The Project is addressing three types of construction sites

New construction | Renovation | Demolition

- Alimak Group Management
- Arris
- Beijer construction material
- Chalmers University of Technology
- Cramo

• Fabege

- Global Load Out Solutions
- Gordian Logistics Optimization Systems
- Haga ROT Services in Norrköping
- IVL Swedish Environmental Research Institute

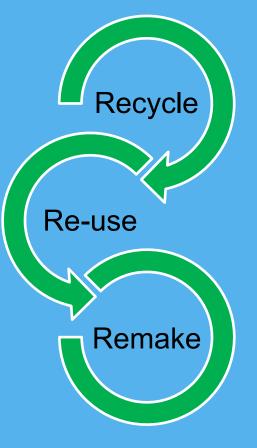
Partners

23 stakeholders

The Project is addressing three types of construction sites

New construction | Renovation | Demolition

- Jansson Contracting in Linköping
- Jernhusen
- Lindholmen Science Park
- Linköping University
- Lund University


- Myloc
- NCC
- Plan B Bim
- Ragn-Sells Recycling
- Scania CV

- Swedish Construction Clients
- Swedisol
- The Recycling Agency AB in Gothenburg

Contact

THANK YOU FOR YOUR ATTENTION

- Anders Forsberg
- Government Affairs | Innovation Deployment Officer
- +46 709 388 368
- anders.forsberg@lindholmen.se

Contact

- Anders Forsberg
- Government Affairs | Innovation Deployment Officer
- +46 709 388 368
- anders.forsberg@lindholmen.se

Re-use

Remake

